IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Painleve analysis and singularity confinement: the ultimate conjecture

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L53
(http://iopscience.iop.org/0305-4470/26/2/005)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:46

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A: Math. Gen. 26 (1993) L53-L58, Printed in the UK

LETTER TO THE EDITOR

Painlevé analysis and singularity confinement: the ultimate
conjecture

A Ramanif, B Grammaticos; and K M Tamizhmani§

t CPT, Ecole Polytechnique, 91128 Palaiseau, France

1 LPN, Université Paris VII, Tour 24-14, Stme &iage, 75251 Paris, France

§ Departement of Mathematics, Pondicherry University, Kalapet, Pondicherry, 605104
India

Received 10 September 1992

Absfract. We propose a new integrability criterion based on the combination of two
powerful integrability detectors: the ‘Painlevé method’ (for continuous systems) and the
singularity confinement (for discrete systems). With this new criterion we can treat a
large variety of systems that combine discrete and continuous characteristics: differential-
difference systems (ordinary and partial), differential-delay problems and even a class of
integro-ditferential equations.

The Painlevé method, based on the singularity analysis of the solutions of nonlinear
differential equations, has turned out to be the most reliable integrability detector over
the past decade {1,2]. On the other hand, the ever increasing interest in inteprable
mappings and lattices has recently spurred the investigations that resulted in the
proposal of an inteprability detector for discrete systems: the so-called singularity
confinement [3]. Although for both methods the key word is singularity, their
formulation (in fact their very essence) was such that neither could be adapted to
systems that are genuinely both discrete and continuous. Clearly, a synthesis was
needed. In what follows, we will propose such a method, incorporating features of
both approaches, and which will allow us to treat a large variety of systems. Our
conjecture will thus provide an integrability criterion for discrete—continuous systems
[4).

The singularity confinement method has been put forward as an integrability test
for purely discrete systems. In the year that followed its appearance a host of results
have been obtained confirming its predictive value and its usefulness. The essence of
this method is quite simple. Consider a mapping (for the simplicity of the presentation
we limit ourselves here to one-dimensional systems) in which a given term is expressed
as a function of a (small) number of the preceding ones. Now it may well happen
that, due to particular initial conditions, this term diverges. The consequences of this
infinite value will propagate with the iteration of the mapping and thus the subsequent
terms may diverge (or vanish, or in any other way behave abnormally) as well. Our
conjecture, based on the observed behaviour, is that when the mapping is integrable,
these divergences or anomalies do not propagate ad infinitum but rather disappear
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after a few steps. We then say that the singularity is confined. The divergence
usually appears because of the vanishing of some denominator. One can introduce
an expansion parameter by assuming that this denominator becomes very small but
does not quite vanish and accordingly expand the solution of the mapping locally.

On the other hand, the, by now, classical singularity analysis, or ‘Painlevé method’
has become a standard tool for the investigation of the integrability of continuous
systems. The idea here.is that, given a nonlinear differential equation, one looks for
singular solutions around a movable (ie. initial condition dependent) singularity. If
all these singular solutions can be expressed as Laurent series around the singularity
then we say that the equation has the Painlevé property. In order to combine
the two methods, assuming that we have a differential-difference system, we will
consider the effect of a singularity in the continuous variable when it is iterated
following the discrete evolution. The Painlevé property requires that this singularity
be pole-like and the singularity confinement criterion consists in demanding that this
singularity disappears after some iterations (in the discrete variable). The procedure
will hopefully become clearer with the examples we give later.

Let us start with the auto-Backlund relation for the potential-kdv equation [5],
that allows us to relate two solutions with numbers of kinks differing by one unit

whpy + uh F (Uppr = 2 )+ K, = 0. N (0

where the prime denotes the derivative with respect to the continuous variable =, and
K,, is related to the energy of the kink which is added (or removed) and should, in
principle, depend on n but rot on z. We will indeed see this fact essentially emerge
from our analysis.

In the spirit of the singularity confinement method, we assumec that u,, is regular
and that a singularity first appears for u, . Given the Riccati form of (1) this
singularity can only be a simple pole: w, ., = 1/(x — z,) with resonance » = —1
due to the arbitrariness of z,. Given u,,; we can compute u, . The Riccati
now has divergent coefficients and they will induce a singularity that, for u, ,,
will have a position z; fixed by wu,,;. We can easily prove that if u, is of
the form w, = m(m — 1}/2(z — z;) then wu; ., will diverge as A/(z — z;) with
A=im(m+1)or A= j(m~—1)(m—2). Thus starting from u, ; = 1/(z — =)
we get u, ., that either diverges as 3/(z — z,) or has a finit¢ vajue. In the jatter
case the singularity should be confined while a resonance v == 3 exists. Thus we must
expand u, ., in power series and evaluate the resonance compatibility condition.
It turns out to be just dX, /dz = dK,_,/dz, independent of n. This would
lead to K, = x, + 2¢'(z). However by redefining u: u — u + #(z), we can
absorb ¢ entirely and without loss of generality we can assume that K, is indeed
z-independent. When this condition is satisfied u,, ., is regular, ie. the singularity
is indeed confined. When u, ., diverges we pursue the analysis one step further:
u, 45 diverges either as 6/(z — x,) or as 1/(x — x,). The first case takes vs deeper
into the singularity (but in such a way that we can always re-emerge eventually),
while, if we follow the second, we see readily that we can emerge at the very next
step. We have checked that under the sole condition: dK, /dz is independent of
n, the singularity is also confined in this case. By now the pattern has become
clear: a singularity appears at a certain iteration and, when iterated, it becomes
confined. The process may necessitate an arbitrarily large number of steps, but from
the structure of the singularity it is clear that we can always emerge. Moreover, the
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simplest case, ie. confinement in one step, is the generic one. It is precisely this
confinement pattern that gives the constraint on K ,: once it is satisfied, equation
(1) becomes integrable. Systems such as (1) were previously treated following the
‘classical’ Painlevé approach, usually through some periodicity assumption. One
assumed that for some N, u, = u,, ., and explored the integrability of the finite
N-order system for increasing (but still typically small) values of N. This method has
two major drawbacks. The first is that small- N cases are far from being generic. The
second is more serious for non-autonomous systems. If the n-dependent coefficients
(such as K, in equation (1)) are not periodic, there-is simply no way to perform
the Painlevé analysis through periodiﬁcation In contrast, the singularity confinement
approach deals with such cases in a straightforward way.

The previous case has clearly shown the.interplay between the processes of
(continuous) singularity analysis and confinement. The sitvation becomes even simpler
when one considers differeatial-difference equations whete the evolution does not
enter through derivatives. We wiIl illustrate this through the equation -

R .q = (aq,,, + bq, + C)(Qn+1 qn—l) — @

that contains both the discrete MKdv [6] (—a =se=1, b =0 and the Kac-Van
Moerbeke system [7] (¢ = ¢ = 0, b = 1), two well-known mtegrable equations. We
start by rewriting (2) as -

mg T -
QTI.+1 _Q'n.—1+ a‘q% +bqn +C (3}

and assume that g, is regular: g, = g+ g'(z — ) + g'(z—zy)? + - -, such that
ag? 4+ bg -+ c=0. Thus g, develops a singularity at "30

Gugl = 1/(269 + 5)(1‘ —24) + 4y + Tt

Iterating we find g, 2 =—g—-bfat(x—xzy)A+ .- where A depends on g, g’ and
g" as well as on g, _;. The value of q,, 28t % =% }s a zero of the denominator and
thus potentially dangerous. However, it is precisely this value that cancels the infinite
contribution of q,,,4 in g, ,3. Thus the latter has 2 finite value and the singularity is
confined. Note that in this case all singularities are, by construction, pure poles: we
do not integrate any differential equation, thus there are no resonances and therefore
no resonance conditions. The ‘continuous’ Painlevé part is automatically satisfied, and
only the confinement is operative Two further remarks are in order at this point. The
Kac-Van Moerbeke equation is not included in this analysxs since a = 0 However
its analysxs follows the same steps We start: with

ﬂ~g(wamu)+ -z

leading tol ' .

L Qi =1 (2 = 20) + (=2 A+ q,ss—(w wu)B+

and finally a non-smgular dn4s4» that depends on qn_l and g. The second remark
concerns the assumption that the first derivative of g does not vanish. Although
this is the simplest case (the one we consider as ‘generic’) it is not the only one.
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For instance in the discrete MKAV case, if g’ == O then A in the expression of g,
diverges and the singularity will need extra steps to be confined. Namely

Qg1 = 2/(2ag + b)(z — =) + O(1)
Quiz = —b/2a + Oz — =)

Tny3 = 2{/(2ag + b)(z — zp) + O(1)
Quys = —9 — bfa+ O((z — x)%)

and the singularity is finally confined as q,_ s is regular. In principle, one must
consider all the possible singular behaviours; vanishing derivatives of g up to arbitrary
order. Our claim is that the essential constraints arise already at the lowest-order
singularity. '

Let us now consider the application of our technique to partial differential
‘equations. As an example we will choose the two-dimensiona] Toda lattice [8] that
we extend so as to make it non-autonomous. It is most convenient here to use the
bilinear formalism [9] and adopt the notation = = 7,,_y, 7 = 7, T = 7,4, €fc. We
have

T

v @)

(the usual form corresponds o a(n,z,») = 1). Solving for 7 we have

(Tr — ea(n, z,¥) = TTey — T

— 1 TTey — TeTy 9

T—E[ a’(n!m!y) +T]. (S)
Next we assume that for some 7 the term in square brackets vanishes at (z,y) =
(0,0), and thus 7 vanishes also. Using the form 7 = fz + gy + O(z?, 2y, y%) we
compute 7. Now, because of the vanishing of 7, T would diverge unless the terms in
square brackets vanishes when computed for 7 and a{n + 2, 2, y). We implemented
this condition (a calculation that can be performed in a straightforward way using the
REDUCE algebraic manipulation language) and combining it with the same condition
for = and a(n,z,y)} we obtain a constraint for a that reads

@—2e+¢=(loga),,. (6)

This equation for e is nothing else but the two-dimensional Toda lattice as can
readily be seen by taking loge = u — u whereupon (6) writes u,, = e¥~% — g%,
Several interesting solutions exist to (6). If we take e to be independent of (z, y), we
find ¢« = an + 8, ie. a Toda lattice with non-constant coefficients [10] that belongs
to the more general family of the Hirota—Miwa equation [11]. Assuming that + and
a depend on (x,y) only through » = /2y and a independent of » we obtain a
generalized cylindrical Toda. Its usual form [12] results from the assumption o = 1:
(Fz—7%) = r(7,,. +r~11,.} — 7.2 Finally, taking = = y we recover (for ¢ = 1) the
one-dimensional Toda lattice [13]. Putting = = ¥ and taking © = W — w we indeed
find

uH o eﬁ-—u — e’u—-_‘lé_. (7)
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Equation (7) is usually interpreted as a relation between the dynamical variables
u, that are functions of x. However, there exists another interesting interpretation.
We can consider that (7) relates one function u(z) at different ‘times’ z - nf
where £ is some fixed %uanuty Thus equation (7), written now as u"(x) =
g(#+i)-u(2) _ eu(2)-%(=2) now becomes a differential-delay equation. It is precisely
this equation that was obtained by Levi and Winternitz in [14] as reductions of the
Toda lattice through a combination of discrete and continuous symmetries. As far as
the singularity analysis (in the general sense presented in this article) is concerned,
the non-local relation between v and %, namely %(z) = u(x + &), does not imply
any special treatment: this differential-delay equation passes the test exactly in the
same way as the Toda lattice. On the other hand, this novel interpretation of (7) will
allow us to extend our approach to genuinely non-local equations like the integro-
differential intermediate long-wave (ILW) equation [15].

The ILW equation can be written in bilinear formalism [16] as

(iD, +ik~'D, - D, YF-F=0 - | ®

where F = F(x —ih,t) and F = F(x - ih,t) where h is a real parameter. For
h — oo, this equation goes over to the Benjamin-Ono equation. Its essential non-
locality comes from the fact that it relates the function at point (z + ik) to the
function at (x —ih). Thus, the usual nonlinear form of the equation requires the
introduction of integro-differential terms. Here, we will perform the analysis directly
on the bilinear form (8). Using the explicit expression of the Hirota operator D we
rewrite (8) as '

(F,+h P F + NF(F,+ h"'F,)~F,  F-FF, +2F,F.=0 (9

where, from (8), A = —1. However, we will keep this parameter free in the analysis.
We assume that F(= F(x — 3ih)) is regular and that F vanishes as ¢™ on a
singularity manifold ¢(z,¢). Since F is regular the only possibility for F' is to
vanish linearly F° ~ ¢, ie. m = 1. We expand both F and F in powers of ¢:
F=Y o Fuof, F=Y,_, F,¢* and determine F,, F}, F,,... from the equation
relating F and F, i.e. the ‘down-shift’ of (9). The resonances being —1 and 0, we have
¢ and F] as free functions. (In order to perform the calculations more easily we use
the Kruskal ansatz [17] ¢ = =+ f(t), but this is nothing but a practical convenience.)
Next we consider the equation for F. Reqmrmg a singularity confinement we ask
that F be re regular and we expand F=3%,_, Fr¢*. The resonances of (9) are 0 and
3 and, so, Fy and F; are free. We compute, thus, Fy, F, and substitute into the
compatibility condition for the resonance (3) that reads 0- F3 Q. Using the values
of the F; we computed, we find that @ has a factor (A + 1). Thus compatibility is
satisfied and the singularity is confined, provided A = ~1, which corresponds precisely
to the exact form of the ILW equation (8).

From the examples presented we can conclude that a new, powerful method
for the investigation of integrability has emerged. The usual Painlevé method (for
continuous systems) related integrability to the nature of the singularities. The
sinpularity confinement method for discrete systems requires that singularities do
not propagate ad infinitum if the system is to be integrable. The continuous part of
the system generates a movable singularity that must eventually (in the course of the
discrete iterations) disappear. Thus our conjecture is that for systems that are both
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discrete and continuous integrability is related to confined singularities. The examples
that we presented have shown precisely how one can apply the method. In principle,
one rust examine an arbitrarily large number of singularities. However, in practice, it
turns out that the simplest singularity is the ‘generic’ one: the essential constraints for
integrability stem from its study. So we expect in most physically interesting examples
to be able to obtain sufficient evidence on integrability from the study of a small
number of singularities.
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