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Abstract W propose 8 nm integrability aiterion based on the mmbinaiion of WO 
powerful integrability detectors: the ‘Painlev6 method‘ (for mntinuous systems) and the 
singularity mn6nement (for discrete sytems). W3h thii new aiterion we cm treat a 
large variety of systems that mmbine d m l e  and mntinuous characteristics: diEcrential- 
difference systems (ordinary and partial), differentialdelay problems and even a class OC 
mtegmdifferential equations. 

The Painlev6 method, based on the singularity analysis of the solutions of nonlinear 
differential equations, has turned out to be the most reliable integrability detector over 
the past decade [1,2]. On the other hand, the ever increasing interest in integrable 
mappings and lattices has recently spurred the investigations that resulted in the 
proposal of an integrability detector for discrete systems: the so-called singularity 
confinement 131. Although for both methods the key word is singularity, their 
formulation (in fact their very essence) was such that neither could be adapted to 
systems that are genuinely 60fh discrete and continuous. Clearly, a synthesis was 
needed. In what follows, we will propose such a method, incorporating features of 
both approaches, and which will allow us m treat a large variety of systems. Our 
conjecture will thus provide an integrability criterion for discrete+mtinuous systems 

The singularity confinement method has been put forward as an integrability test 
for purely discrete systems. In the year that followed its appearance a host of results 
have been obtained confirming its predictive value and its usefulness. The essence of 
this method is quite simple. Consider a mapping (for the simplicity of the presentation 
we limit ourselves here to one-dimensional systems) in which a given term is expressed 
as a function of a (small) number of the preceding ones. Now it may well happen 
that, due to particular initial conditions, this term diverges. The consequences of this 
infinite value will propagate with the iteration of the mapping and thus the subsequent 
terms may diverge (or vanish, or in any other way behave abnormally) as well. Our 
conjecture, based on the observed behaviour, is that when the mapping is integrable, 
these divergences or anomalies do not propagate ad hfiifum but rather disappear 
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after a few steps. We then say that the singularity is confined. The divergence 
usually appears because of the vanishing of some denominator. One can introduce 
an expansion parameter by assuming that this denominator becomes very small but 
does not quite vanish and accordingly expand the solution of the mapping locally. 

On the other hand, the, by now, classical singularity analysis, or %inlev6 method' 
has become a standard tool for the investigation of the integrability of continuous 
systems. The idea hewis that, given a nonlinear differential equation, one looks for 
singular solutions around a movable (ie. initial condition dependent) singularity. If 
all these singular solutions can be expressed as Laurent series around the singularity 
then we say that the equation has the Painlev6 propeny. In order to combine 
the two methods, assuming that we have a differentialdifference system, we will 
consider the effect of a singularity in the continuous variable when it is iterated 
following the discrete evolution. The Painlev6 propem requires that this singularity 
be pole-like and the singularity confinement criterion consists in demanding that this 
singularity disappears after some iterations (in the discrete variable). The procedure 
will hopefully become clearer with the examples we give later. 

Let us start with the auto-BScklund relation for the potential-Kdv equation [5], 
that allows us to relate two solutions with numbers of kinks differing by one unit 

U',+* + U', + (U,+* - Un)2+ if, = 0. (1) 

where the prime denotes the derivative with respect to the continuous variable I, and 
Kn is related to the energy of the lcink which is added (or removed) and should, in 
principle, depend on n but not on I. We will indeed see this fact essentially emerge 
from our analysis. 

In the spirit of the singularity confinement method, we m u m e  that U, is regular 
and that a singularity first appears for U,,.,. Given the Riccati form of (1) this 
singularity can only be a simple pole: U,+, = l/(z - I") with resonance U = -1 
due to the arbitrariness of z,,. Given U,+ we can compute uctz. The Riccati 
now has divergent coefficients and they wdl induce a singularity that, for u , + ~ ,  
will have a position I,, @ed by u , + ~ .  We can easily prove that if uk is of 
the form uk = m(m - 1)/2(1 - I,,) then U,.., will diverge as A/(I - 2") with 
A =  ; m ( m + l )  or A =  $(m-l)(m-2) .  Thusstartingfrom U%+, = l / ( x - z 0 )  
we get unt2 that either diverges as 3/(+ - I,,) or has a finite value. In the latter 
case the singularity should be confined while a resonance U = 3 exists. Thus we must 
expand U,+* in power series and evaluate the resonance compatibility condition. 
It turns out to be just dKn/dx = dK,-,/dz, independent of n. This would 
lead to Km = K,, + 24'(x). However by redefining U: U + U + 4(1), we can 
absorb 4 entirely and without loss of generality we can assume that K, is indeed 
z-independent. When this condition is satisfied unt2 is regular, ie. the singularity 
is indeed confined. When diverges we pursue the analysis one step further: 
u,+~ diverges either as 6/(+ - zo) or as 1/(1 - I"). The first case takes us deeper 
into the singularity @ut in such a way that we can always re-emerge eventually), 
while, if we follow the second, we see readily that we can emerge at the very next 
step. We have checked that under the sole condition: dK,/dx is independent of 
n, the singularity is also confined in this case. By now the pattern has become 
clear: a singularity appears at a certain iteration and, when iterated, it becomes 
confined. The process may necessitate an arbitrarily large number of steps, but from 
the structure of the singularity it is clear that we can always emerge. Moreover, the 
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For instance in the discrete mdv case, if g' = 0 then A in the expression of q,+2 
diverges and the singularity will need extra steps to be confined. Namely 

q,+1= 2/(2ag + b)(+ - 10) + W )  
qnt2 = -b/2a + O(+ - xu) 
Qn+3 = 2/(2ag + b)(a: - ZO) + W )  
qn+4 - - -g - b/a  + O((x - so)') 

and the singularity is finally confined as q,+, is regular. In principle, one must 
consider all the possible singular behaviours; vanishing derivatives of g up to arbitraq 
order. Our claim is that the essential constraints arise already at the lowest-order 
singularity. 

Let us now consider the application of our technique to partial differential 
equations. As an example we will choose the twodimensional Tbda lattice [S] that 
we extend so as to make it non-autonomous. It is most convenient here to use the 
bilinear formalism 191 and adopt the notation r,,-*, r = r,, 5 z rat,, etc. We 
have 

( 7 ~ - r Z ) a ( n , x , y )  = rrzy-rzru (4) 

(the usual form corresponds to a(n, x, y) = 1). Solving for 7 we have 

Next we assume that for some r the term in square brackets vanishes at (x,y) = 
(O,O), and thus 7 vanishes also. Using the form 7 = f x + gy  + U(x2, r y ,  y2) we 
compute 7. Now, because of the vanishing of 7,F would diverge unless the terms in 
square brackets vanishes when computed for 7 and a( n + 2, z, y). We implemented 
this condition (a calculation that can be performed in a straightforward way using the 
REDUE algebraic manipulation language) and combining it with the same condition 
for 7 and a ( n , ~ , y )  we obtain a constraint for a that reads 

i.T-2a+g=(loga),,,. (6) 

Thjs equation for a is nothing else but the twodimensional ' M a  lattice as can 
readily be seen by taking log a = U - - e--%. 
Several interesting solutions exist to (6). If we take a to be independent of (2, y), we 
6nd a = an + p ,  Le. a 'Ibda lattice with non-constant coefficients [lo] that belongs 
to the more general family of the Huota-Miwa equation [Ill. Assuming that r and 
a depend on (2, y) only through T = J?E?i and a independent of n we obtain a 
generalized cylindrical lbda. Its usual form [I21 results from the assumption a = 1: 
(7~- rz) = ~ ( r , ,  + T - ' T ~ )  - rV2. Finally, taking x = y we recover (for a = 1) the 
one-dimensional lbda lattice [13]. Putting r = ew and taking 7~ = Z- w we indeed 
find 

- 
whereupon (6) writes uZ8 = 

(7) = ez-u - e"-". 
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qua t ion  (7) is usually interpreted as a relation between the dynamical variables 
utL, that are functions of x. However, there exists another interesting interpretation. 
We can consider that (7) relates one function U(.) at different 'times' I + n< 
where < is some fixed Thus equation (7), written now as u"(x) = 

this equation that was obtained by Levi and Wmternitz in [14] as reductions of the 
lbda lattice through a combination of discrete and continuous symmetries. As far as 
the singularity analysis (in the general sense presented in this article) is concerned, 
the non-local relation between U and Ti, namely Ti($) = U($ + e), does not imply 
any special treatment: this differential-delay equation passes the test mcfly in the 
same way as the lbda lattice. On the other hand, this novel interpretation of (7) will 
allow us to extend our approach to genuinely non-local equations like the integro- 
differential intermediate long-wave (ILW) equation [lq. 

uantity. 
eU("+O-"(*) -eu(z)-u(z- 9 now becomes a differential-delay equation. It is precisely 

The nw equation can be written in bilinear formalism [I61 as 

(iD, + ih-'D, - D,')F. F = 0 (8) 

where F = F(x - ih,t) and F = F(x + ih,t) where h is a real parameter. For 
h + CO, this equation goes over to the Benjamin-Ono equation. Its essential non- 
locality comes from the fact that it relates the function at point (+ + ih) to the 
function at (z - ih). Thus, the usual nonlinear form of the equation requires the 
introduction of integro-differential terms Here, we will perform the analysis directly 
on the bilinear form (8). Using the explicit expression of the Hirota operator D we 
rewrite (8) as 

where, from (8), X = -1. However, we will keep this parameter free in the analysis. 
We assume that E(= F(x - 3ih)) is regular and that F vanishes as q P  on a 
singularity manifold +(x,t). Since E is regular the only possibility for F is to 
vanish linearly F U 4, Le. m = 1. We expand both E and F in powers of 4: 
E =  F = C , = , F , f k  and determine F2, F3, FA,...  from the equation 
relating F and E i.e. the 'down-sluft' of (9). The resonances being -1 and 0, we have 
4 and F, as free functions. (In order to perform the calculations more easily we use 
the Kruskal ansatz [17j 4 = z+f(f), but this is nothing but a practical convenience.) 
Next we consider the equation for F. Requiring - a singularity confinement we ask 
that Fkqbk. The resonanw of (9) are 0 and 
3 and, so, Fu and F3 are free. We compute, thus, F,, 3 and substitute into the 
compatibility condition for the resonance (3) that reads 0 .  F3 = Q. Using the values 
of the we computed, we find that Q has a factor (A  + 1). Thus compatibility is 
satisfied and the singularity is confined, provided X = -1, which corresponds precisely 
to the exact form of the nw equation (8). 

From the examples presented we can conclude that a new, powerful method 
for the investigation of integrability has emerged. The usual Painlev6 method (for 
continuous systems) related integrability to the nature of the singularitier The 
singularity confinement method for discrete systems requires that singularities do 
not propagate ad infinifum if the system is to be integrable. The continuous part of 
the system generates a movable singularity that must eventually (in the course of the 
discrete iterations) disappear. Thus OUT conjecture is that for systems that are both 

be replar and we expand F = - _  
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discrete and continuous integrability is related to confined singularities. The examples 
that we presented have shown precisely how one can apply the method. In principle, 
one must examine an arbitrarily large number of singularities. However, in practice, it 
t u m s  out that the simplest singularity is the ‘generic’ one: the essential constraints for 
integrabiliv stem from its study. So we expect in most physically interesting examples 
to be able to obtain sufficient evidence on integrability from the study of a small 
number of singularities. 
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